Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Pathol Int ; 72(10): 519-524, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-2008755

ABSTRACT

A 61-year-old woman without significant medical history developed fever 3 days after severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination and went into shock the next day. She was negative for SARS-CoV-2 mRNA in real-time polymerase chain reaction (PCR). Finally, she died 10 days after vaccination. At autopsy, the heart showed moderate dilatation of both ventricles, and the myocardium showed an uneven color change and decreased elasticity. Histologically, severe myocarditis with extensive myocytolysis was observed. The myocarditis showed severe inflammatory cell infiltration with T-lymphocyte and macrophage predominance, and in addition to the inflammatory cells described above, vast nuclear dust accompanying neutrophilic infiltration was observed. In the bone marrow and lymph nodes, hemophagocytosis was observed. In postmortem examination, nucleic acids of any cardiotropic viruses including SARS-CoV-2 were not detected using multivirus real-time PCR system. We discussed the relationship between the possible immune reaction after vaccination and the myocarditis observed in this case from immunopathological viewpoints. This mRNA vaccine is the first applied nucleic acid vaccine for humans, and its mechanism of efficacy and immune acquisition remain unclear. We hope the accumulation of more detailed analyses of the similar cases to reveal the mechanism of this kind of adverse reaction.


Subject(s)
COVID-19 , Myocarditis , Vaccines , Autopsy , Dust , Female , Humans , Middle Aged , Myocarditis/etiology , RNA, Messenger , SARS-CoV-2 , Vaccination , Vaccines, Synthetic , mRNA Vaccines
2.
Int J Mol Sci ; 22(19)2021 Oct 05.
Article in English | MEDLINE | ID: covidwho-1457746

ABSTRACT

Various pathogens, such as Ebola virus, Marburg virus, Nipah virus, Hendra virus, Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV), Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and SARS-CoV-2, are threatening human health worldwide. The natural hosts of these pathogens are thought to be bats. The rousette bat, a megabat, is thought to be a natural reservoir of filoviruses, including Ebola and Marburg viruses. Additionally, the rousette bat showed a transient infection in the experimental inoculation of SARS-CoV-2. In the current study, we established and characterized intestinal organoids from Leschenault's rousette, Rousettus leschenaultii. The established organoids successfully recapitulated the characteristics of intestinal epithelial structure and morphology, and the appropriate supplements necessary for long-term stable culture were identified. The organoid showed susceptibility to Pteropine orthoreovirus (PRV) but not to SARS-CoV-2 in experimental inoculation. This is the first report of the establishment of an expandable organoid culture system of the rousette bat intestinal organoid and its sensitivity to bat-associated viruses, PRV and SARS-CoV-2. This organoid is a useful tool for the elucidation of tolerance mechanisms of the emerging rousette bat-associated viruses such as Ebola and Marburg virus.


Subject(s)
COVID-19/virology , Chiroptera/virology , Organoids/virology , Orthoreovirus/physiology , Reoviridae Infections/virology , SARS-CoV-2/physiology , Animals , COVID-19/veterinary , Cell Culture Techniques , Cells, Cultured , Chiroptera/physiology , Humans , Intestines/cytology , Intestines/virology , Organoids/cytology , Reoviridae Infections/veterinary
3.
Nature ; 588(7839): 670-675, 2020 12.
Article in English | MEDLINE | ID: covidwho-943910

ABSTRACT

The distal lung contains terminal bronchioles and alveoli that facilitate gas exchange. Three-dimensional in vitro human distal lung culture systems would strongly facilitate the investigation of pathologies such as interstitial lung disease, cancer and coronavirus disease 2019 (COVID-19) pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here we describe the development of a long-term feeder-free, chemically defined culture system for distal lung progenitors as organoids derived from single adult human alveolar epithelial type II (AT2) or KRT5+ basal cells. AT2 organoids were able to differentiate into AT1 cells, and basal cell organoids developed lumens lined with differentiated club and ciliated cells. Single-cell analysis of KRT5+ cells in basal organoids revealed a distinct population of ITGA6+ITGB4+ mitotic cells, whose offspring further segregated into a TNFRSF12Ahi subfraction that comprised about ten per cent of KRT5+ basal cells. This subpopulation formed clusters within terminal bronchioles and exhibited enriched clonogenic organoid growth activity. We created distal lung organoids with apical-out polarity to present ACE2 on the exposed external surface, facilitating infection of AT2 and basal cultures with SARS-CoV-2 and identifying club cells as a target population. This long-term, feeder-free culture of human distal lung organoids, coupled with single-cell analysis, identifies functional heterogeneity among basal cells and establishes a facile in vitro organoid model of human distal lung infections, including COVID-19-associated pneumonia.


Subject(s)
COVID-19/virology , Lung/cytology , Models, Biological , Organoids/cytology , Organoids/virology , SARS-CoV-2/physiology , Tissue Culture Techniques , Alveolar Epithelial Cells/cytology , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/virology , COVID-19/metabolism , COVID-19/pathology , Cell Differentiation , Cell Division , Clone Cells/cytology , Clone Cells/metabolism , Clone Cells/virology , Humans , In Vitro Techniques , Influenza A Virus, H1N1 Subtype/growth & development , Influenza A Virus, H1N1 Subtype/physiology , Integrin alpha6/analysis , Integrin beta4/analysis , Keratin-5/analysis , Organoids/metabolism , Pneumonia, Viral/metabolism , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , SARS-CoV-2/growth & development , Single-Cell Analysis , TWEAK Receptor/analysis
SELECTION OF CITATIONS
SEARCH DETAIL